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Fig.3. Perspective view of a (Ca-Os) coordination unit. Un- 
starred labels with the same indices (one primed) refer to 
oxygen atoms belonging to a single diacetamide molecule. 
An asterisk indicates an oxygen atom related by the two- 
fold axis to the oxygen atom with the same index. 

coordinat ion units. The average Br -N separation is 
3"28/~. The N - B r - N  angle is 176 o. 

Discussion 

This structure differs from the structures of the diace- 
tamide complexes of  the alkali halides (Roux & Boey- 

ens, 1969a, b) in that there is no nearest-neighbour in- 
teraction between cation and anion. In this respect it 
corresponds with the ionic thiourea complexes (Boey- 
ens & Herbstein, 1967) where complete segregation of 
anions and cations occurs. Unlike the alkali halide 
complexes of  diacetamide, but like the thiourea com- 
plexes (Boeyens & Gafner ,  1968), the CaBr2 .4(d iace-  
tamide) thus appears  to be a simple ion-dipole com- 
plex. Whether  or not the N H - B r  contact  of  3.28 A, 
should be interpreted as a hydrogen bond as suggested 
by the infrared study of  Gentile & Shankoff  (I965), is 
not clear. 

The authors  would like to thank Mrs M.Pistor ius  
for p rogramming  the o J-scan correction. 
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The Squared-Tangent Formula* 

BY HERBERT HAUPTMAN 

U.S. Naval Research Laboratory, Washington, D.C. 20390, U.S.A. 

(Received 8 April 1969) 

In the noncentrosymmetric space groups, the values of the squares of the tangents of a basic set of 
phases determine the values of the squares of the tangents of others, provided that the crystal structure 
consists of identical atoms. In selected, noncentrosymmetric space groups, e.g. P21212~, the square of 
the tangent of any phase is uniquely determined by the magnitudes alone of the structure factors. 
Hence, in the latter space groups, it is expected that the formulas derived here will supplement the older 
tangent formula and will facilitate the early determination of the values of certain phases. 

1. Introduction 

It has long been known that, for structures consisting 
of  N identical a toms in the unit cell, a number  of  rela- 
tionships among  the structure factors exist. One of 

. . . . . . . . . . . .  

* Presented at the March 1969 meeting of the American 
Crystallographic Association in Seattle, Washington. 

these is the so-called tangent formula  (Karle & Haupt-  
man,  1956), 

(]EkEh_k[ sin (¢k + (flh--k}k 
t an  ~Ph = (iEkEh._k] COS ((ilk q- ?h -~k)->-k ' (1.1) 

in which q~ denotes the phase of  the normalized struc- 
ture factor E, the vector h is fixed, and the averages are 
extended over the same set of vectors k. Equation (1.1) 
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is used to determine the values of new phases once 
preliminary/values of a basic set of phases have been 
obtained. It is useful because it retains its validity even 
if the vectors k are restricted so that the IEkl and IEh--kl 
are large, e.g. greater than unity. 

Another interpretation of (1.1) is that the sines and 
cosines of some phases determine the values of the 
sines and cosines of others (assuming, of course, that 
the magnitudes of the normalized structure factors, 
]El, are known). It is therefore natural to ask whether 
less information, e.g. knowledge of only the squares of 
the tangents of some phases, might not similarly lead 
to the values of the squares of the tangents of others. 
The chief aim in the present paper is to give an affirm- 
ative answer to this question. (It is of course well 
known that the value of the square of any trigonom- 
etric function of the angle (O uniquely determines the 
value of the square of any other trigonometric function 
of (O, as well, incidentally, as the cosine of 2(O.) 

Only the space groups P 1 and P2t2t2t are treated in 
detail here since they illustrate the two kinds of formu- 
las which arise. However, analogous formulas exist for 
all the noncentrosymmetric space groups. It is assumed 
throughout that the crystal structure consists of N iden- 
tical atoms in the unit cell. 

2 .  S p a c e  g r o u p  P 1  

In a similar way, 
1 1 N 

IEkl 2 sin2 (ok 2 2N jffi cos 4xk.  rj 

1 
+ --;? ~ sin 2rck. rj. sin 2~zk. r j , .  (2.5) 

I v  j # j '  
1 

Equations (2.4) and (2.5) lead directly to 

<lEkl 2 cos 2 (ok>k= (1~12 sin2 (ok>k = ½, (2"6) 

in which the averages are taken over all vectors k in 
reciprocal space. (It should perhaps be emphasized 
that (2.6) is no longer valid if the vectors k are re- 
stricted, for example, so that the I~1 are greater than 
unity.) 

Next, let the vector h be fixed. Multiplying (2-4) by 
the like equation obtained by replacing k by h - k  in 
(2-4), averaging over all vectors k, and employing also 
(2.4), one is led to 

< (IEk[ 2 COS2 (ok-- ~)(IEh--k[ 2 COS2 (oh--k-- 21---) >k 

- 2 N 1  ( ]EhI2c°s2(oh- 1 )  

1 N 
COS 4~zh rj (2"7) 

8N z ~=~ " . 

In the space group P 1 the normalized structure factor 
is defined by means of 

1 N 
- ~ cos 2rck. rj F_~= IEkl exp (i~oO N 1/2 j=l 

i N 
+ -N-iT~-j z--1 sin 2zck. r j ,  (2.1) 

where rj is the position vector of the atom labelled j. 
Then 

1 N 
[Ek[ cos (ok-- NI/2 ~, cos 2rck. r j ,  (2.2) 

j=l 

1 N 
[F-'kl2 c°s2 (ok= -Ny~I c°s2 2z~k. r~- 

1 N 
+ - -  ~ COS 2zck. rj cos 2zck. r r , 

N i*J' 
1 

(2.3) 

Finally, in view of (2-2) and (2.6), 

<] F_~Eh_k[ 2 c o s  2 
1> 

(ok COS2 (oh--k- -4- k 

2N 

1 
8N3/2 Ig2h] COS (o2h- (2"8) 

In a similar way, using (2.5) and the equation ob- 
tained from (2.4) by replacing k by h - k ,  one obtains 

IEkEb-kl 2 sin2 (ok COS2 (oh--k-- ~- k 

- -  2N IEhl 2sin2 (oh-- ~- 

1 
+ ~ ]Eahl cos (o2h. (2"9) 

. 1 1 N 
-- COS 4zrk. rj [Ek[ 2 cos 2 (Ok 2 2N j~l 

1 N 
+ ~ ~ cos 2~rk. rj cos 2zrk. r~,. 

j~j" 
1 

1 
[ghl 2 sin2 (oh 2 

1 ~ 
IEh] 2cos2 (oh 2 

1 
Ignoring terms of order-~--~ in (2-8) and (2-9), 

(2.4) which is permissible if N is sufficiently large, these 
equations lead directly to 

IEkEh_kl 2 sin 2 (Ok COS 2 (oh--k-- ~- k (2" 10) 

(, k 
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and finally, after a straightforward but tedious com- 
putation, to 

tan 2 Cph ~-- 

( (  ~) 1 ) 
[EkEh-k[ 2 sin2 9 k  COS2 (/gh--k--  " + 2[Eh~-[EkEh-kl2 COS 2¢k COS 2 (/gh_ k k 

( (  ~)  1 ) 
I E x E h - u l  2 c o s 2  ~k COS 2 ~0h--k-- - --  21eh]~ _- IEuEh_.kl 2 COS 2~0k COS 2 ~0~-k k 

(2.11) 

the squared-tangent formula in the space group P I. 

3. Space group P2a212a 

3.1. Two preliminary formulas 
Assume that h, k, and l are even integers. Then the 

normalized structure factor is given by (International 
Tables for X-ray Crystallography, 1952) 

Ehkl = 
Nl/Z f N/4 

-4- - ~,j~ (cos 2zchx~ cos 2zckyi cos 2zclz~ 

- i  sin 2zchx~ sin 2rcky~ sin 2rdz~)~. (3.1) 

Following the derivation of equations (2.4) and 
(2.5), one is led in a similar way to 

N/4 
~. cos 2z~hx~ cos 2z~hx~, cos 2~zky~ cos 2~zky~, 

J ~=J' 
I 

x cos 2zdz, cos 2zlz,,= IV_ (Ehkll2COS 2 ~Ohkl-- 1) 

NX/2 ( 
32 (E2h°° + E°2~'° + E°°2~ + E2h2k0 + EO2k2I 

+ E2h021+ ]E2h2k2l I COS q)2h2k21) ' (3.2) 

NI4 
Y. sin 2z~hxj sin 2z~hxj, sin 2zckyj sin 2z~kyj sin 2~zlz~ 

y ~ j '  
1 

x sin 2rdzy -- ~-~- [Eh~ll 2 sin ~ ~0~ 

N1/2 ( 
+ - - ~  E2hoo + Eo2kO a t- Eoo2i- E2h2k O -- EO2k2 ~ 

-- E2h021 + ]E2h2k21lcos ~2h2k21) " (3"3) 

3"2. The squared-cosine formula 
Assume that h, k, l, and h~ are even integers. Then 

the two-dimensional structure factor Enl~C0 (or one- 
dimensional if h~ or k happens to be zero) is given by 

4 N/4 
Enltc°= Ni-/2 j~'l= cos 2rchaxj cos 2rckyj. (3.4) 

As in the derivation of (2.4), (3.4) leads to 

4 N/4 
(COS 4XhlXj + cos 4rckyj IEh~kOI 2 -  1 = N j= 1 

+ COS 4rchxxj cos 4rckyj) + 16 N/4 cos 2rchlx~ 
N j~j 

1 

x cos 2rchlxj, cos 2rckyj cos 2z~ky~,. ( 3 . 5 )  

Similarly, 

4 ~4 [cos 4zc(h - hOxj + cos 4rdz~ IE,_h,0tl 2 -- 1 = N j=, 

+ cos 4re(h- h,)xj cos 4rclzj] + 16 s/4~, 
N jcj, 

1 

cos 2~z(h-hm)xjcos 2~z(h - hl)Xj" cos 2rdzj 

x cos 2rclzr. (3.6) 

Fixing the even integers h and l and multiplying (3.5) 
and (3"0, one finds, after some simplification, that 

16 N/4 
((IEhlko[ 2 -  1) (Igh_h~oil 2 -  1))hx = ~2- j_~ 

- cos 4~hxj + 2 cos 4rchxj cos 4rdzj 

1 
+ cos 4rcky~ cos 4rdzj + 2 cos 4rchxj cos 4rckys 

, ) + 2 cos 4rchxj cos 4~kyj cos 4rdzj 

128 N/4 
+ ~2-j~,,_~ cos 2nhxj cos 2nhxj, cos 2nkyj 

1 

x cos 2nkyl, cos 2nlzl cos 2nlzj, (3.7) 

in which the average is extended over all even inte- 
gers ha. 

Next, let the (three-dimensional) vector h, with even 
components h,k, l, be fixed. Let k be a two-dimensional 
vector, having even components, with the property 
that h - k  is also two-dimensional. Then clearly the 
components of  h - k  are also even. For  example, if 
k=(hlkO), where hi and k are even, then h - k =  
(h-hlOl) is two-dimensional and its components are 
also even. The formula (3.7) corresponds to this choice 
for k. Two other formulas like (3.7) exist. One corre- 
sponds to the choice k=(0kl l ) ,  whence h - k =  
(hk-klO), where kl is even so that k -  kl is also even. 
The other corresponds to the choice k = (hOl~), whence 
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h - k =  (Okl-ll),  where ll and l-1~ are both even. The 
variants of (3.7) which are associated with the latter 
two choices for k yield expressions for (([E0~cdl 2 -  1) 
x ([Enk_ka01 z -  1))gl, averaged over the even integers 

kx, and (([En0h[ z -  1) ([E0~Hx[ z -  1))q, averaged over 
the even integers 11, respectively. Combining these 
three formulas, one obtains 

) 8 N[4 
(IEklZ--1)(lEh_klZ--1) = 3 i  ~ ~. cos4z~hxj 

k ~v j = l  

+ cos 4rckyi + cos 4rdz~ + 4 cos 4rchxi cos 4rckyj 

+ 4 cos 4zckyi cos 4rclzi + 4 cos 4rdz~ cos 4zchx~ 

128 N/4 
+ 3 COS 4z~hxI cos 4rcky~ cos 4rclz~) + ~ j~,,.~ 

1 

x cos 2z~hx~ cos 2zchxy cos 2rckyj cos 2rckyi, 

x cos 2rdzi cos 2rdz~,, (3'8) 

where the average is taken over all two-dimensional 
vectors k having even components and such that the 
vectors h - k  are also two-dimensional (and incident- 
ally also have even components since the components 
h,k, l of the vector h are assumed to be even). Em- 
ploying (3.4) and (3.2), equation (3.8) reduces to 

(IEkl 2 -  1) (IEh_kl 2 -  1) = 3 N  IEhl= cos2 ~0h 
k 1) 

- 3N3/z (Eznoo + Eoz~o + Eoo~z - 2E~nEg0 

-- 2E0292z - 2Ezn0z~ - [E~h[ cos ~0z~), (3"9) 

the so called squared-cosine formula for the space 
group P21212x. It should be emphasized again that the 
fixed vector h has non-zero components h,k,l, all of 
which are even, and that k ranges over all two-dimen- 
sional vectors, with even components, such that the 
vectors h - k  are also two-dimensional. 

3.3. The squared-sine formula 
Assume that the integers h,k, l  are even and that h~ 

is odd. The two-dimensional structure factor EhlkO is 
now given by 

4i N/4 
-- ~. COS 2rchlx~ sin 2rcky~. (3.10) EhlkO N1/2 j= ! 

As in the derivation of (2.4) one now finds 

N N[3 
IEn,~ol 2 -  1 = Tj__Z (cos 4rchlx~- cos 4zcky~ - 

16 N/4 
COS 4:~hlXj cos 4rcky~)+ ~ -  Y cos 2zchlxj 

j:~j' 
1 

cos 2rChlX~, sin 2rcky~ sin 2rckyy , (3.11) 

and, in a similar way, 

4 N/4 
IEn-nx01l 2 -  1= ~ j ~ l [ - c o s  4z~(h-hl)xj-cos 4rdzj 

16N_L 4 
+ cos 4rc(h - hi)x/COS 41zlzj] + . . . .  L sin 2~z(h- hl)X~ 

1 

sin 2rc(h-hl)X~, sin 2rdzj sin 2zdz~,. (3"12) 

Fixing the even integers h and l and multiplying (3.11) 
and (3-12), one finds, after some simplification, that 

16 N/4 
((IEn, k0l 2 - 1 )  (IEn-n~0zl 2 -  1))hi = ~ -  j=~l 

( 1 1 
- ~- cos 4zrhxj + -~ cos 4rchxj cos 4rdzj + cos 41rxhj 

1 1 
× cos 4zclz~ + ~ cos 4rchxj cos 4rckyj- -2- cos 4~rkyj 

128 N/4 
× COS 4rckyj cos 4rclzj + ~ 5 -  ~ sin 2rchxj 

) ~ j ,  . 

1 

× sin 2rchxj, sin 2~zkyj sin 2rckyj, sin 2rdz~ sin 2rdz~, 
(3.13) 

in which the average is extended over all odd inte- 
gers hi. 

Next, let the (three-dimensional) vector h, with even 
components h, k, l, be fixed. Let k be a two-dimensional 
vector, having precisely one odd component, with the 
property that h - k  is also two-dimensional. Then 
clearly precisely one component of h - k  is also odd. 
Thus k = (hi, k, 0), h -  k = ( h -  hi, 0, l), where hi and 
h - h i  are odd; or k =  (0, kl, /), h - k = ( h , k - k x , O )  
where ki and k -  kl are odd; or k--  (h, 0,/1), h -  k = 
(0, k, l - l l )  where ll and l - l l  are odd. [The cases k =  
(hi,0,/), h - k = ( h - h l , k , O ) ,  hi and h-h~ odd; k =  
(h, ks,0), h - k = ( O , k - k b l ) ,  kl and k - k l  odd; k =  
(0, k, ll), h -  k = (h, 0, l - /1) ,  l I  and l -  l I  odd, give 
nothing new.] Equation (3.13) corresponds to the first 
of these choices for k. Corresponding to the second 
choice for k is a formula like (3.13) which gives the 
value of (([E0glz[ z -  1) (IEng-elol z -  1))k 1 averaged over 
the odd integers ka. Finally, there corresponds to the 
third choice for k a formula similar to (3.13) which 
yields an expression for ((IEnohl z -  1)(IE0kt-ql z -  1)) h 
averaged over the odd integers 11. These three formulas 
are combined to give 

8 N]4 
((IF_~[ 2 - 1 )  (IEh_kl z -  1)) k -  3 N  2 j=~I(--COS 4rchxj 

- cos 4rckyy - cos 4rclzj + 4 cos 4rchxj cos 4zckyy 

+ 4 cos 4rckyj cos 4rclzj + 4 cos 4rdzj cos 4rchxy 

- 3 cos 4rchxjcos 4rckyj cos 4rdzj) 
128 N/4 

+ - -  ~ sin 2rchxj sin 2rchxj, sin 2rckyj 
3N 2 j~j, 

1 

x sin 2rckyy sin 2rdzj sin 2rdz r (3" 14) 
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where the average is taken over all two-dimensional 
vectors k having precisely one odd component  and 
such that  the vectors h - k  are also two-dimensional 
(and incidentally also have precisely one odd com- 
ponent  since the components  h, k , l  of the vector h are 
assumed to be even). Employing (3" 10) and (3.3), equa- 
t ion (3.14) reduces to 

((IF_q,I 2 -  1) (IEh_kl 2 -  1))k= 3N IEnkz[2 sin2 (iMcl 

-- ÷ )/~r~2- (E2h00 ÷ Eo2ko + Eoo21 ÷ 2E2h2k0 

at- 2Eo2k2t ÷ 2E2ho2t-- IE2hz~2A cos (i2h=kZ~), (3" 15) 

the so-called squared-sine formula for the space group 

1 
[Eh[ 2 COS2 (ih-- 2 -~ 

3N 
4 <([F_~[ 2 -  1) (IEh_kl 2 -  1) 

COS2 ((ilk -~- (ih--0)k (3"1 6) 

1 
]GI 2sin2 (ih-- 2 -~ 

3N 
4 (([F~12- 1) ([Eh_kl z -  1) 

S in2 ((ik+(ih--r.))x, (3"17) 

where the averages are extended over all two-dimen- 
sional vectors k for which the vectors h - k  are also 
two-dimensional and subject now to no additional 
restriction on the parity of the components  of  k. (Note, 
however, that  the conditions imposed on h, k, h - k  
rule out the possibility that  precisely two components  
of k be odd.) 

Equations (3-16) and (3.17) imply 

1 
IE!]2 sin2 ~ h L  -~ ,~ ((IEkl2_, 1)(]Eh_=klZ_--1) sin2 ((ik + (ih--f~)_)), 

1 - (([Ekl 2 -  1) (IEh_kl 2 -  1) COS 2 ((ik'JF(ih--0)k 
[ghl z COS2 (ih-- 2 

(3.18) 

P212121. It should be emphasized again that  the fixed which, after some simplification leads finally to the 
vector h has non-zero components  h,k,l, all of which squared-tangent  formula for the space group P21212~, 

( { 1 }) 
(IEki2--1) (IEh--kl 2 - 1 )  S in2 ((ik+(ih--Z)+ 2iE~-COS 2((ik+(ih--k) k 

tan 2 (ik ~ -- (3"19) 

(Igkl 2 -  1) (Igh_kl 2 -  1) COS 2 ((ik + (in-k-- 2~/~hl 2 COS 2((ik + (ih--Z) k 

are even, and that  k ranges over all two-dimensional or the equivalent 

((IEk[ 2 -  1)(IEh_k] 2 -  1){([Eh[ 2 -  1)s in  2 ((ik-l- (ih_0-]-" l } )  k 

tan 2 (ih~ . . . . . . . . . . . . .  , (3.20) 

(([Ekl 2 -  1)(]Eh_kl 2 -  1){(IEhl2--1 COS 2 ((ik-÷-(ih_0"]--~-/)k 

vectors, with precisely one odd component ,  such that 
the vectors h - k  are also two-dimensional.  

3"4. The squared-tangent formula 
Let all components  of the fixed vector h be even and 

suppose that  k and h - k  are two-dimensional.  If all 
components  of k are even then all components  of  h - k  
are also even and, owing to the space group symmetry,  
( ik=0 or zc and (ih_k=0 or re. Hence, in any event, 
(ik + (ih--k = 0 or n, cos 2 ((ik + (ih-Z) = 1 and sin2((ik + 
(ih--k)=0. If, on the other hand,  precisely one com- 
ponent  of  k is odd then precisely one component  of 
h - k  is also odd and, owing to the space group sym- 
metry, either ( ik=0 or re and (ih_k = +re/2 or else 
(ik =_+re/2 and (ib_k=0 or n. In any event then, 
(ik-]-'(ih_k: +~Z/2, COS2((ik-[-(ih_k):0, and sin 2 ((ik+ 
(ih--k) = 1. Neglecting the terms of  order 1/N3/2 in (3.9) 
and (3.15) which is permissible if N is sufficiently large, 
equation (3.9) and (3"15) may therefore be written 

where the averages are extended over all two-dimen- 
sional vectors k such that  the vectors h -  k are also two- 
dimensional. Al though (3-19) and (3.20) have been 
derived on the assumption that  the components  of the 
three-dimensional vector h are all even, the same kind 
of  p roof  shows that  these equations have unrestricted 
validity independent  of the parity of  the components  
of  h. However, the proof  of  these formulas requires 
that  [Eh[ exceed unity and even, for improved accuracy 
in practice, that  [Eh] > 2. 

In marked contrast  to the tangent formula (1.1), 
which requires a knowledge of the values of  a basic set 
of phases before addit ional phases can be determined, 
the squared-tangent  formula (3.19) or (3.20) permits 
the calculation of the square of the tangent of  any 
three-dimensional phase prior to the determination of  
the value of any phase, a consequence of the two- 
dimensional character of  k and h - k  and of the space 
group symmetry.  Hence (3.20) supplements (1.1) and 
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may find application in the early determination of those 
phases which can at best be but crudely approximated 
by (1-1). 

• 4. Concluding remarks 

Squared-tangent formulas have been found for the 
space groups P1 and P212121. Analogous formulas 
exist for the remaining noncentrosymmetric space 
groups. It is anticipated that, at least for the space 
group P2x2a2x and other, selected, noncentrosymmet- 
ric space groups, these formulas will find application 
in facilitating the early determination of certain phases. 
The results obtained here raise two questions. First 
does (3.20) hold also in the space group P 1 ? Secondly, 
does (3.20) retain its validity if the k are restricted so 

that the I~1 and IEh-kl are large, say greater than 
unity? Although the available evidence indicates 
strongly that both of these questions are to be an- 
swered in the affirmative, rigorous proofs have been 
elusive so far. With respect to practical applications, 
the second question is particularly significant since, 
owing to a reduction of the errors arising from finite 
sampling, it is better to restrict the vectors k so that the 
INk[ and IEh_k[ are large. 
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Neutron and X-ray Ditfraetion Studies of Hydrazinium Sulfate, NzH6SO4* 

BY PER-GUNNAR JONSSON~" AND WALTER C. HAMILTON 
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(Received 20 June 1969) 

Hydrazinium sulfate has been studied by X-ray and neutron diffraction. The crystals are orthorhombic, 
space group P21212x, with four formula units in a cell of dimensions: a= 8.251 (5), b= 9"159 (1), c= 
5"532 (1)/~. Both the X-ray and neutron data were affected by extinction; this effect was very severe 
in the neutron case. By inclusion of six anisotropic extinction parameters in the least-squares refinement 
it was possible to obtain a good fit between observed and calculated structure factors. The structure 
consists of N2H~ + ions and SO~- ions held together by a three-dimensional system of N - H . . . O  
hydrogen bonds. A number of the hydrogen bonds are weak and bifurcated or trifurcated. The N2H~ + 
ion has an almost perfectly staggered conformation. The neutron and X-ray diffraction results are in 
good agreement with respect to bond lengths involving the non-hydrogen atoms. Although the hydrogen 
atoms were located with a precision of 0"03/~ in the X-ray study, the mean N-H bond lengths were 
0-2 It shorter than those found from the neutron study, confirming the existence of large systematic 
errors in the location of hydrogen atoms from X-ray results when a spherical atomic electron distribu- 
tion is assumed. 

Introduction 

The crystal structures of a number of hydrazine com- 
pounds have been studied; a review of some recent 
work has been given by Liminga (1968). These com- 
pounds often contain a quite complicated arrangement 
of hydrogen bonds, and an accurate location of the 
hydrogen atoms is thus essential. Only two hydrazine 
compounds studied by neutron diffraction bare been 
reported: lithium hydrazinium sulfate, LiN2HsSO4, by 
Padmanabhan & Balasubramanian (1967) and hydra- 
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zinium hydrogenoxalate, N2HsHC204, by Nilsson, 
Liminga & Olovsson (1968). 

The present investigation involves the refinement of 
the hydrazinium sulfate structure by both X-ray and 
neutron diffraction methods. An X-ray diffraction 
study of this compound has been carried out by Nitta, 
Sakurai & Tomiie (1951); the accuracy of this deter- 
ruination was, however, rather low. 

Crystal data 

Hydrazinium sulfate, N2H6SO4, F.W. 130.12. Ortho- 
rhombic, a = 8.251 (5),* b = 9.159(1), c = 5-532(1) A. (Nit- 

* Numbers in parentheses here and throughout this paper 
are estimated standard deviations in the least significant digits. 


