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Fig.3. Perspective view of a (Ca-QOg) coordination unit. Un-
starred labels with the same indices (one primed) refer to
oxygen atoms belonging to a single diacetamide molecule.
An asterisk indicates an oxygen atom related by the two-
fold axis to the oxygen atom with the same index.

coordination units. The average Br-N separation is
3-28 A. The N-Br-N angle is 176°.

Discussion

This structure differs from the structures of the diace-
tamide complexes of the alkali halides (Roux & Boey-
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ens, 1969a,b) in that there is no nearest-neighbour in-
teraction between cation and anion. In this respect it
corresponds with the ionic thiourea complexes (Boey-
ens & Herbstein, 1967) where complete segregation of
anions and cations occurs. Unlike the alkali halide
complexes of diacetamide, but like the thiourea com-
plexes (Boeyens & Gafner, 1968), the CaBr, . 4(diace-
tamide) thus appears to be a simple ion-dipole com-
plex. Whether or not the NH-Br contact of 3-28 A
should be interpreted as a hydrogen bond as suggested
by the infrared study of Gentile & Shankoft (1965), is
not clear.

The authors would like to thank Mrs M. Pistorius
for programming the w-scan correction.
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The Squared-Tangent Formula*

By HERBERT HAUPTMAN
U.S. Naval Research Laboratory, Washington, D.C. 20390, U.S.A.

(Received 8 April 1969)

In the noncentrosymmetric space groups, the values of the squares of the tangents of a basic set of
phases determine the values of the squares of the tangents of others, provided that the crystal structure
consists of identical atoms. In selected, noncentrosymmetric space groups, e.g. P2,2,2,, the square of
the tangent of any phase is uniquely determined by the magnitudes alone of the structure factors.
Hence, in the latter space groups, it is expected that the formulas derived here will supplement the older
tangent formula and will facilitate the early determination of the values of certain phases.

1. Introduction

It has long been known that, for structures consisting
of N identical atoms in the unit cell, a number of rela-
tionships among the structure factors exist. One of

* Presented at the March 1969 meeting of the American
Crystallographic Association in Seattle, Washington.

these is the so-called tangent formula (Karle & Haupt-
man, 1956),

,<|,E"EJ:"_I sin (¢x .+(/1h—,|£>,1‘_
| EyEy -l €08 (0y + 0n 1)
in which ¢ denotes the phase of the normalized struc-

ture factor E, the vector h is fixed, and the averages are
extended over the same set of vectors k. Equation (1-1)

(1-1)

tan g, =
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is used to determine the values of new phases once
preliminary values of a basic set of phases have been
obtained. It is useful because it retains its validity even
if the vectors k are restricted so that the |Fy| and |E, ]
are large, e.g. greater than unity.

Another interpretation of (1-1) is that the sines and
cosines of some phases determine the values of the
sines and cosines of others (assuming, of course, that
the magnitudes of the normalized structure factors,
|E}, are known). It is therefore natural to ask whether
less information, e.g. knowledge of only the squares of
the tangents of some phases, might not similarly lead
to the values of the squares of the tangents of others.
The chief aim in the present paper is to give an affirm-
ative answer to this question. (It is of course well
known that the value of the square of any trigonom-
etric function of the angle ¢ uniquely determines the
value of the square of any other trigonometric function
of ¢, as well, incidentally, as the cosine of 2¢.)

Only the space groups P1 and P2,2,2, are treated in
detail here since they illustrate the two kinds of formu-
las which arise. However, analogous formulas exist for
all the noncentrosymmetric space groups. It is assumed
throughout that the crystal structure consists of N iden-
tical atoms in the unit cell.

2. Space group P1

In the space group P1 the normalized structure factor
is defined by means of

E,=I|EJ exp (ip) = Nl,z 3 cos 20k .1

4 e Z sin 27k . ry ,

N1/2 I @1

where r; is the position vector of the atom labelled j.
Then

N
[Ey| cos ¢x= Nl/ _Z cos 27k . rj, (22)
N
|E,|? cos? gy = L > cos? 27k . r;
Nj:1
1 N
+ — > cos2nk.rjcos 2nk.r,, (2:3)
NJ’#J
1
<1
2 2 0 B 4
| Ey |2 cos? @y 5= 2N le cos 4zk . 1;
+ L3 > cos2nk.rjcos2nk .. (2:4)
N =y

1

. 1
ol sin? gy — =

D!

1
<lEkEh xl? sin2 gy cos? gy — r

THE SQUARED-TANGENT FORMULA

In a similar way,

[Ey|? sin? g, — % =— 2N ,zx cos4nk . r;
+ _1]\71%} sin 27k . r; sin 27k . ;. . (2-5)
Equations (2:4) and (2-5) lead directly to
B cos? g =Bl sin? g =%,  (2°6)

in which the averages are taken over all vectors k in
reciprocal space. (It should perhaps be emphasized
that (2-6) is no longer valid if the vectors k are re-
stricted, for example, so that the |E,| are greater than
unity.)

Next, let the vector h be fixed. Multiplying (2-4) by
the like equation obtained by replacing k by h—k in
(2-4), averaging over all vectors k, and employing also
(2-4), one is led to

<(|Ek|2 cos? g — l) (IE,,_kl2 c0S2 @y _x— l)
2 2/ /s

1 1
= 55 (IBkcos o= 3)

8]1V2 Z cos4zh.r;. 27
Finally, in view of (2-2) and (2-6),
<|EkEh—kI2 Cos2 @y COS2 Py_y — %>
k
' 1 1
—_ 2, 2 —
N (IE,,[ COS2 @y 2)
1
T SN | Ezp| COS @ay - (2-8)

In a similar way, using (2-5) and the equation ob-
tained from (2-4) by replacing k by h—k, one obtains

. 1
<|EkE.._k|2 Sin? g, 0% pyy—

1 1
2 2 —_
= (|E| sin? g 2)

1
+ SN |Expl €OS @y 29

Ignoring terms of order —— in (2-8) and (2'9),

1
N3/2
which is permissible if N is sufficiently large, these
equations lead directly to

(2-10)

[a—y

EZ 52 —_——
| Ey|?cos? gy 5

<|EkEh Kl? cos? tﬂkCOSZ Pn—x— *>
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and finally, after a straightforward but tedious com-
putation, to

tan? g, ~
< (|EkEh—k|2 COs? gy, OS2 @y _y —

the squared-tangent formula in the space group Pl.

3. Space group P2,2,2,

3-1. Two preliminary formulas

Assume that 4, k, and / are even integers. Then the
normalized structure factor is given by (International
Tables for X-ray Crystallography, 1952)

Enki= " -1 2. (cos 2mhx; cos 2nky; cos 2nlz;

N1/2 ( Nja
4 {I—l

—i sin 2mhx; sin 2nky; sin 27niz;) } 31

Following the derivation of equations (2-4) and
(2:5), one is led in a similar way to

N4
2, cos 2mhx; cos 2mhxj cos 2mky; cos 2nkyy
%)
1

X cos 2xlz; cos 2mlzy = f—VG— (Ehmlz c0S2 phr1— ;)

— T3y ((EZhOO + E02k0 + EOOZI + E2h2k0 + E02k21

+ Espo2it | Eanaiarl €OS ¢2h2k21) s (3.2)

Nj4

2, sin 2zhx; sin 2mhxy sin 2nky; sin 2zky; sin 27lz4
i#y

1

xsin 2nlzs = T]\é (lEhIcllz sin2 gpx: ;)

N2
+ 35 (EZh()O + Egaro+ Eoo2i— Eapano — Eoara

— Eypo2it | Eanaiail €OS @anaiar) - (33

3-2. The squared-cosine formula
Assume that A4, k, /, and A, are even integers. Then

the two-dimensional structure factor Epx (or one-
dimensional if A; or k happens to be zero) is given by

N4

> cos 2mh;xy cos 2nky; . (3-4)
|

4
Emwo= i
fs

As in the derivation of (2-4), (3-4) leads to

' . 1
<(|EkEh_klz sin? ¢, CoS? gy _y — 4,) + 2IE|;|~2- | B By — |2 cos 2¢, cos? ¢n—k>

1
) - 20ER | Ex By |? cOs 2¢p, cos? ¢n—k>
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3

4
|Enol—1=

Nja
ZI (cos 4nhy x5+ cos dnky;

j=

Ni4

> cos 2mh;x;
i

+cos 4nh x; cos dnky;)+

X €OS 27th x;- cos 2nky; cos 2nky;s: . (3-5)

Similarly,

4 N/4
|Ey—pyoil? — 1= N 21 [cos 4n(h— hy)x;+cos 4miz;
=

6 N[4
+cos 4n(h— hy)x; cos 4rnlz;] + 2,
N i

c0s 2n(h— hy)xscos 2n(h— hy)x; cos 2mlz;

x cos 2mlzy . (3-6)

Fixing the even integers 4 and / and multiplying (3-5)
and (3-6), one finds, after some simplification, that

16 i
Enwol? = D) UEy—porl® = 1w = 3 2

(;— cos 4nhx;+ ; cos 4nhx; cos 4niz;
+cos 4nky; cos 4nlz;+ ; cos 4rnhx; cos 4nky;

+ ; cos 4nhx; cos 4nky; cos 47z121)

128 N4

+ 3 J% cos 2rhx; cos 2nhxy cos 2mkyy
1

X cos 2nkys cos 2nlzy cos 2nlzy 37
in which the average is extended over all even inte-
gers .

Next, let the (three-dimensional) vector h, with even
components 4, k,/, be fixed. Let k be a two-dimensional
vector, having even components, with the property
that h—k is also two-dimensional. Then clearly the
components of h—k are also even. For example, if
k =(h;k0), where h, and k are even, then h—k=
(h—h,0/) is two-dimensional and its components are
also even. The formula (3-7) corresponds to this choice
for k. Two other formulas like (3-7) exist. One corre-
sponds to the choice k=(0k;/), whence h—k=
(hk — k,0), where k| is even so that k —k; is also even.
The other corresponds to the choice k= (#0/;), whence
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h—k=(0kl—1,), where /; and /—/; are both even. The
variants of (3-7) which are associated with the latter
two choices for k yield expressions for {(|Eok,112—1)
X (|Epg—0l>— 1))k, averaged over the even integers
k,, and <(|Ehoz |2— 1) (|Eoki-1,|>—1))1,, averaged over
the even 1ntegers L, respectlvely Combining these
three formulas, one obtains

N4

<(IEkl2_ 1) (lEh klz 1)> 3N2 z Cos 47'ChX]
+ cos 4nky;+cos 4nlz;+4 cos 4nhx; cos 4nky;

+4 cos 4nky; cos 4nlz;+4 cos 4niz; cos 4nhx;

128 N4

W2

+ 3 cos 4nhx; cos 4nky; cos dnlz;) +

X cos 2mhx; cos 2nhx; cos 2nky; cos 2nky;

x cos 2nlz; cos 2nlz; 3%
where the average is taken over all two-dimensional
vectors k having even components and such that the
vectors h—k are also two-dimensional (and incident-
ally also have even components since the components
h,k,l of the vector h are assumed to be even). Em-
ploying (3-4) and (3-2), equation (3-8) reduces to

(4BE-1) (5 k|2—1>> = (1B cost
1

2 .
3 ) Y ) (E2n00+ Eo2k0 + Ego2t — 2 Eanzko

~2Eqk21—2E2n001 — | Eyl €OS 93y) (39
the so called squared-cosine formula for the space
group P2,2,2,. It should be emphasized again that the
fixed vector h has non-zero components 4, k,/, all of
which are even, and that k ranges over all two-dimen-
sional vectors, with even components, such that the
vectors h—k are also two-dimensional.

3:3. The squared-sine formula

Assume that the integers h,k,/ are even and that 4,
is odd. The two-dimensional structure factor E, 4o is
now given by

4; Nis .
hko = W,Z, cos 2nhyx; sin 2znky; . (3:10)
As in the derivation of (2-4) one now finds
N N3

[ Epy ol — 1— o Z (cos 4nhyxj—cos 4nky; —

16 N4
cos 4zh;x; cos 4nky;)+ — > cos 2rhyx;

N i
cos 2nhyx; sin 2zky; sin 2rnky;: , (3-11)
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and, in a similar way,
4 N
|Eh—hlol|2— 1= W z [—COS 47T(h—h )Xj—COS 47‘[le
j=1

+cos 4n(h— hy)x; cos 47tlzj]+ 16 Z sin 27n(h— hy)x;

j#l
1

sin 27t(h— hy)x;- sin 2nlz; sin 27lz; . (3-12)
Fixing the even integers # and / and multiplying (3-11)
and (3-12), one finds, after some simplification, that

16 Nja

{(IEnkol>— 1) (| Ep—n otl2— 1)Dn, = .Z

(— % cos 4mhx;+ % cos 4mhx;j cos 4nlz;+ cos 4nxh;

x cos 4nlz;+ %cos 4rhx; cos dnky;— ; cos4nky;
8 N/4
x cos 4nky; cos 47zlz,-) + ——- > sin 2nhx;
N2 s

x sin 2zhxs sin 2nky; sin 2mky; sin 2zlz; sin 2nlz;
(3-13)

in which the average is extended over all odd inte-
gers h;.

Next, let the (three-dimensional) vector h, with even
components A, k,/, be fixed. Let k be a two-dimensional
vector, having precisely one odd component, with the
property that h—k is also two-dimensional. Then
clearly precisely one component of h—k is also odd.
Thus k=(hy,k,0), h—k=(h—h;,0,/), where h, and
h—h; are odd; or k=(0,k;,/), h—k=(hk—k,,0)
where k; and k—k; are odd; or k=(4,0,/;), h—k=
(0,k,1—1)) where /; and /-1, are odd. [The cases k=
(1,0,1), h—k=(h—hy,k,0), hy and h—h; odd; k=
(h,kl,O), h-—k=(0,k—k1,1), k1 and k—'kl Odd, k=
©0,k,1)), h—k=(h,0,i1—-1), I; and [—I; odd, give
nothing new.] Equation (3-13) corresponds to the first
of these choices for k. Corresponding to the second
choice for k is a formula like (3-13) which gives the
value of ((IEok 12— 1) (IEnk—k,0l>— 1))k, averaged over
the odd integers k;. Finally, there corresponds to the
third choice for k a formula similar to (3 13) which
yields an expression for {(|Eno,|2—1) (|Eoxi—,[2— 1))z,
averaged over the odd integers I, These three formulas
are combmed to give

ER—=1) (Epsl2= D= =3 (—cos drh;
3N?2 j=1

—cos 4nky;—cos 4nlz;+ 4 cos 4nhx; cos dnky;

+4 cos 4nky; cos 4niz;+4 cos 4nlz; cos dnhx;

—3 cos 4nhx;jcos 4nky; cos 4nlz;)

128 N4
+ ——= > sin 2nhx; sin 2zhx; sin 2nky;
3N2 J#/

x sin 2nky; sin 2zlz; sin 2nlz,  (3:14)
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where the average is taken over all two-dimensional
vectors k having precisely one odd component and
such that the vectors h—k are also two-dimensional
(and incidentally also have precisely one odd com-
ponent since the components 4, k,/ of the vector h are
assumed to be even). Employing (3-10) and (3-3), equa-
tion (3-14) reduces to

WEL=D (Bl = D)= 5

1 2
- 2) * 3y (Ezn00 + Eozwo + Eoozi 2 Esp2k0

(lEhkzlz sin? ppx

+2E om0t 2E 402 — (3-15)

|Esh2kail €OS @ap0k21) >

the so-called squared-sine formula for the space group

IEh| sin? g, —

I = UES=1) (B uf2=1) 008 (gt gy

E. |2 g2 _
|Ey2cost gy~ -

P2,2,2,. It should be emphasized again that the fixed
vector h has non-zero components h,k,/, all of which

1
2 IEPR=1) 1By 2~ 1) sin? (g + 9 i)k
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3N
B2 cos? gy — =~ T UEP=1) (B2~ 1)
cos? (px+@u_i ) (3:16)
, N
|E,|? sin? g, — UEP=1) (JEy_2—1)

sin? (g + @y ) (3:17)

where the averages are extended over all two-dimen-
sional vectors k for which the vectors h—k are also
two-dimensional and subject now to no additional
restriction on the parity of the components of k. (Note,
however, that the conditions imposed on h, k, h—k
rule out the possibility that precisely two components
of k be odd.)
Equations (3-16) and (3-17) imply

(3-18)

which, after some simplification leads finally to the
squared-tangent formula for the space group P2;2,2,,

(B=1) (Bl =D fsin (e on 0+ 50 Iz cos 2+ n-a) ),

tan? g, ~

are even, and that k ranges over all two-dimensional

, (3-19)
<(|Ek|2— 1) (B2 1) {cosz (@t Pns— 71 1, COS 2(¢k+¢h_k)}>
2lEhI \
or the equivalent
<(|Ek|2—1>(|Eh k|2—1){(|E.,|2—1) Sin? (g, +gp_) + }>
tan? g~ —— =, (3-20)

(Ed2=1) (Eyil2= D U= 1 cos? (p+ )+ 1
21/

vectors, with precisely one odd component, such that
the vectors h—k are also two-dimensional.

3-4. The squared-tangent formula

Let all components of the fixed vector h be even and
suppose that k and h—k are two-dimensional. If all
components of k are even then all components of h—k
are also even and, owing to the space group symmetry,
ox=0 or 7 and ¢,_,=0 or n. Hence, in any event,
o+ ou_x=0 or m, cos? (p,+¢,_)=1 and sin¥(g,+
on—1)=0. If, on the other hand, precisely one com-
ponent of k is odd then precisely one component of
h—k is also odd and, owing to the space group sym-
metry, either ¢,=0 or n and ¢,_,= t7n/2 or else
o= tmn/2 and ¢,_,=0 or zn. In any event then,
¢xt+ou_x=£7/2, cos? (p,+¢,_,)=0, and sin? (¢, +
on—1) = 1. Neglecting the terms of order 1/N3/2 in (3-9)
and (3-15) which is permissible if N is sufficiently large,
equation (3-9) and (3-15) may therefore be written

where the averages are extended over all two-dimen-
sional vectors k such that the vectors h—k are also two-
dimensional. Although (3-19) and (3-20) have been
derived on the assumption that the components of the
three-dimensional vector h are all even, the same kind
of proof shows that these equations have unrestricted
validity independent of the parity of the components
of h. However, the proof of these formulas requires
that | Ey| exceed unity and even, for improved accuracy
in practice, that [E,] > 2.

In marked contrast to the tangent formula (1-1),
which requires a knowledge of the values of a basic set
of phases before additional phases can be determined,
the squared-tangent formula (3-19) or (3-20) permits
the calculation of the square of the tangent of any
three-dimensional phase prior to the determination of
the value of any phase, a consequence of the two-
dimensional character of k and h—k and of the space
group symmetry. Hence (3-20) supplements (1-1) and
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may find application in the early determination of those
phases which can at best be but crudely approximated

by (1-1).
" 4. Concluding remarks

Squared-tangent formulas have been found for the
space groups Pl and P2;2,2;. Analogous formulas
exist for the remaining noncentrosymmetric space
groups. It is anticipated that, at least for the space
group P2,2,2, and other, selected, noncentrosymmet-
ric space groups, these formulas will find application
in facilitating the early determination of certain phases.
The results obtained here raise two questions. First
does (3:20) hold also in the space group P1? Secondly,
does (3-20) retain its validity if the k are restricted so
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that the |E,| and |E,_,| are large, say greater than
unity? Although the available evidence indicates
strongly that both of these questions are to be an-
swered in the affirmative, rigorous proofs have been
elusive so far. With respect to practical applications,
the second question is particularly significant since,
owing to a reduction of the errors arising from finite
sampling, it is better to restrict the vectors k so that the
|Eyl and |Ey_,]| are large.
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Neutron and X-ray Diffraction Studies of Hydrazinium Sulfate, N.HSO4*

By PER-GUNNAR JONSSONT AND WALTER C. HAMILTON
Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

(Received 20 June 1969)

Hydrazinium sulfate has been studied by X-ray and neutron diffraction. The crystals are orthorhombic,
space group P2,2,2,, with four formula units in a cell of dimensions: a=8-251 (5), 5=9-159 (1), c=
5-532 (1) A. Both the X-ray and neutron data were affected by extinction; this effect was very severe
in the neutron case. By inclusion of six anisotropic extinction parameters in the least-squares refinement
it was possible to obtain a good fit between observed and calculated structure factors. The structure
consists of NoHZ* ions and SO%~ ions held together by a three-dimensional system of N-H---O
hydrogen bonds. A number of the hydrogen bonds are weak and bifurcated or trifurcated. The N,HZ*
ion has an almost perfectly staggered conformation. The neutron and X-ray diffraction results are in
good agreement with respect to bond lengths involving the non-hydrogen atoms. Although the hydrogen
atoms were located with a precision of 0-03 A in the X-ray study, the mean N-H bond lengths were
0-2 A shorter than those found from the neutron study, confirming the existence of large systematic
errors in the location of hydrogen atoms from X-ray results when a spherical atomic electron distribu-

tion is assumed.

Introduction

The crystal structures of a number of hydrazine com-
pounds have been studied; a review of some recent
work has been given by Liminga (1968). These com-
pounds often contain a quite complicated arrangement
of hydrogen bonds, and an accurate location of the
hydrogen atoms is thus essential. Only two hydrazine
compounds studied by neutron diffraction bave been
reported: lithium hydrazinium sulfate, LiN,HsSO,, by
Padmanabhan & Balasubramanian (1967) and hydra-

* Research performed under the auspices of the U.S.
Atomic Energy Commission.

t On leave from Institute of Chemistry, University of
Uppsala, Box 531, S-751 21 Uppsala 1, Sweden.

zinium hydrogenoxalate, N,HsHC,0,, by Nilsson,
Liminga & Olovsson (1968).

The present investigation involves the refinement of
the hydrazinium sulfate structure by both X-ray and
neutron diffraction methods. An X-ray diffraction
study of this compound has been carried out by Nitta,
Sakurai & Tomiie (1951); the accuracy of this deter-
mination was, however, rather low.

Crystal data
Hydrazinium sulfate, N,H¢SO,4, F.W. 130-12. Ortho-
rhombic, @ =8-251(5),* b=9-159(1), ¢ = 5-532(1) A. (Nit-

* Numbers in parentheses here and throughout this paper
are estimated standard deviations in the least significant digits.



